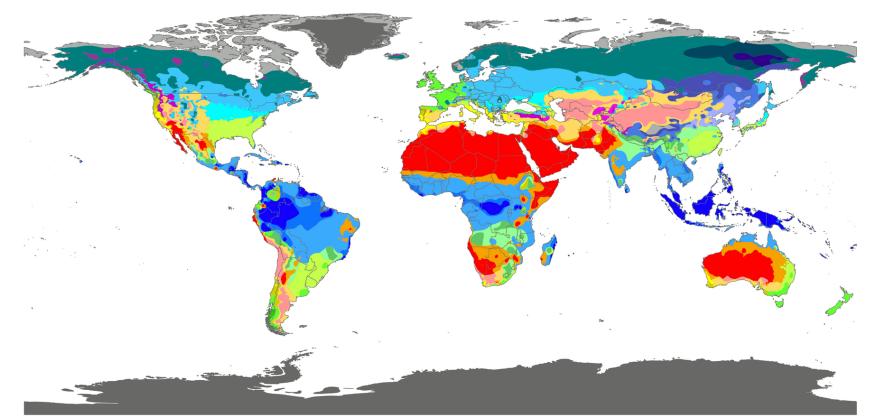


Alternatives to HCFC/HFC refrigerants for high ambient temperatures

Bastian Zeiger


Shecco side event 36th OEWG
22.07.2015
Paris, France
UNESCO Building

Content

- High ambient temperatures
- Potential of natural refrigerants
- Case: unitary AC
- Next steps for A5 countries
- Key messages

High ambient temperatures...

World_Koppen_Map.png: Peel, M. C., Finlayson, B. L., and McMahon, T.A. (University of Melbourne)

- High ambient temperature: mean max daily temps of >40°C
- Red and orange areas can approximately be affected

...and why they are an issue

- Key problem: capacity and efficiency decline at higher ambient temperatures (HAT)
- Among others, efficiency hinges on critical temperature of refrigerant
- High/medium GWP HFC replacements for R22 have a much lower critical temperature -> HAT leads to either a decrease in efficiency or increased equipment cost (larger condenser, evaporator etc.)
- Efficiency of natural refrigerants at HAT is better without addt'l cost

Critical							
	Tempera	Temperature					
	°C	~ to R22					
HCFC-22	96.1	100%					
High/medium GWP options							
R407C	86	89%					
R410A	71.4	74%					
R404A	72	75%					
HFC-134a	101.1	105%					
HFC-32	78. I	81%					
Low GWP HFC options							
HFC-1234yf	94.7	99%					
HFC-1234ze[E]	109.4	114%					
Natural refrigeran	Natural refrigerants						
HC-290	96.7	101%					
HC-600a	134.7	140%					
Ammonia (NH3)	132.4	138%					
CO,	31.1	32%					

...and why they are an issue

- Key problem: capacity and efficiency decline at higher ambient temperatures (HAT)
- Among others, efficiency hinges on critical temperature of refrigerant
- High/medium GWP HFC replacements for R22 have a much lower critical temperature -> HAT leads to either a decrease in efficiency or increased equipment cost (larger condenser, evaporator etc.)
- Efficiency of natural refrigerants at HAT is better without addt'l cost

Critical							
	Temperature						
	°C ~ to R22						
HCFC-22	96.1	100%					
High/medium GWP options							
R407C	86	89%					
R410A	71.4	74%					
K404A	/2	/5%					
HFC-134a	101.1	105%					
HFC-32	78.1	81%					
Low GWP HFC options							
HFC-1234yf	94.7	99%					
HFC-1234ze[E]	109.4	114%					
Natural refrigerant	S						
HC-290	96.7	101%					
HC-600a	134.7	140%					
Ammonia (NH ₃)	132.4	138%					
CO ₂	31.1	32%					

...and why they are an issue

- Key problem: capacity and efficiency decline at higher ambient temperatures (HAT)
- Among others, efficiency hinges on critical temperature of refrigerant
- High/medium GWP HFC replacements for R22 have a much lower critical temperature -> HAT leads to either a decrease in efficiency or increased equipment cost (larger condenser, evaporator etc.)
- Efficiency of natural refrigerants at HAT is better without addt'l cost

	Critical						
	Critical						
	lempera	Temperature					
	°C	~ to R22					
HCFC-22	96.1	100%					
High/medium GWP options							
R407C	86	89%					
R410A	71.4	74%					
R404A	72	75%					
HFC-134a	101.1	105%					
HFC-32	78. I	81%					
Low GWP HFC options							
HFC-1234yf	94.7	99%					
HFC_123470[F]	109.4	114%					
Natural refrigerar	nts						
HC-290	96.7	101%					
HC-600a	134.7	140%					
Ammonia (NH ₃)	132.4	138%					
CO ₂	31.1	32%					

Results from our study

Altern Equipment sector √	atives >	НС	Ammonia	HFO	R32 R32/HFO
Domestic fridges					
Commercial plug-ins					
Condensing units	< 5kW				
Condensing units	> 5kW				
Centralised system supermarket					
Large industrial refrigeration					
AC plug-ins					
AC Single split	< 7kW				
AC Single/Multi split	> 7kW				
AC cars					
Displacement Chillers					
Centrifugal Chillers					

Source: Öko-Recherche et al., 2014

Results from our study

Altern Equipment sector √	atives >	нс	Ammonia	HFO	R32 R32/HFO
Domestic fridges					
Commercial plug-ins					
Condensing units	< 5kW				
Condensing units	> 5kW				
Centralised system supermarket					
Large industrial refrigeration					
AC plug-ins					
AC Single split	< 7kW				
AC Single/Multi split	> 7kW				
AC cars					
Displacement Chillers					
Centrifugal Chillers					

Source: Öko-Recherche et al., 2014

A closer look at unitary AC

- R22 as benchmark, not high-GWP HFCs
- Evaluated: Hydrocarbons, HFOs, R32 and potentially R32-HFO blends
- Requirement: Energy efficiency equal to R22 and at acceptable cost
- Constraints: Flammability -> charge limits
- 100% replacement possible in AC and 90% in all sectors

	Common gas	Cons. A5 2015	НС	HFO	R32	R32/HFO
GWP			3	< 10	675	200-400
AC Portable/Windows	R22	30 kt/y				
AC Single split < 7kW	R22	90 kt/y				
AC Single/Multi split > 7kW	R22	80 kt/y				

Efficiency too low or cost too high compared to other alternatives

Efficient. Safe. But costly and no short term availability

Efficiency high. No or acceptable additional cost. Short term availability

Next steps for A5 countries

- Projected growth in demand for RAC is high in A5 and energy efficiency is a concern
- Currently low adoption of high GWP HFCs
 -> chance for leapfrogging
- Natural refrigerants already present in smaller units (domestic, stand-alone commercial, portable AC)
- Build-up of manufacturing base for R290 ACs in China and India
- Conversion to natural refrigerants should play more central role for funding the transfer of technology

Key messages

Overall:

- HAT decreases efficiency of all refrigerants
- Natural refrigerants can overall replace 55% of HCFC demand in A5 countries in the short and medium term including at HAT

Unitary AC:

- R290 is efficient at HAT, compatible with R22 unit design and can operate at HAT without additional cost
- Although less efficient R32 is a transitional option for multisplits but jeopardizes CO₂-eq savings
- Reliability of R290 technology higher than for R32

Thank you for your attention!

Questions...???

b.zeiger@oekorecherche.de

More information:

Alternatives under HAT:

http://ec.europa.eu/clima/policies/f-gas/legislation/docs/alternatives_high_gwp_en.pdf

Our other studies:

http://oekorecherche.de/en/publications/fluorinated-

greenhouse-gases-and-alternatives

